大家都在关注:19年7月国际学校开放日全国优质国际高中国际初中国际小学推荐
一、填空题1.四位数"3AA1"是9 的倍数,那么A=_____. 2. 在"25 □79这个
数的□内填上一个数字,使这个数能被11整除,方格内应填_____. 3. 能同时被
2 、3 、5 整除的最大三位数是_____. 4. 能同时被2 、5 、7 整除的最大五位
数是_____. 5. 1 至100 以内所有不能被3 整除的数的和是_____. 6. 所有能被
3 整除的两位数的和是______. 7.已知一个五位数□691 □能被55整除,所有符
合题意的五位数是_____. 8. 如果六位数1992□□能被105 整除,那么它的最后
两位数是_____. 9. 42□28□是99的倍数,这个数除以99所得的商是_____. 10.
从左向右编号为1 至1991号的1991名同学排成一行,从左向右1 至11报数,报数
为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1 至11报数,
报数为11的留下,其余同学出列;留下的同学第三次从左向右1 至11报数,报到
11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最
初编号是_____ 号。
二、解答题11. 173 □是个四位数字。数学老师说:" 我在这个□中先后填
入3 个数字,所得到的3 个四位数,依次可被9 、11、6 整除。" 问:数学老师
先后填入的3 个数字的和是多少?
12. 在1992后面补上三个数字,组成一个七位数,使它们分别能被2 、3 、
5 、11整除,这个七位数最小值是多少?
13. 在" 改革" 村的黑市上,人们只要有心,总是可以把两张任意的食品票
换成3 张其他票券,也可以反过来交换。试问,合作社成员瓦夏能否将100 张黄
油票换成100 张香肠票,并且在整个交换过程中刚好出手了1991张票券?
14. 试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
---------------答 案----------------------
1. 7已知四位数3AA1正好是9 的倍数,则其各位数字之和3+A+A+1 一定是9
的倍数,可能是9 的1 倍或2 倍,可用试验法试之。
设3+A+A+1=9 ,则A=2.5 ,不合题意。再设3+A+A+1=18,则A=7 ,符合题意。
事实上,3771 9=419. 2. 1这个数奇数位上数字和与偶数位上数字和之差是
0 或是11的倍数,那么这个数能被11整除。偶数位上数字和是5+7=12,因而,奇
数位上数字和2+□+9应等于12,□内应填12-2-9=1. 3. 990要同时能被2 和5 整
除,这个三位数的个位一定是0.要能被3 整除,又要是最大的三位数,这个数是
990. 4. 99960 解法一:能被2 、5 整除,个位数应为0 ,其余数位上尽量取9 ,
用7 去除999 □0 ,可知方框内应填6.所以,能同时被2 、5 、7 整除的最大五
位数是99960.解法二:或者这样想,2 ,5 ,7 的最小公倍数是70,而能被70整
除的最小六位是100030. 它减去70仍然是70的倍数,所以能被2 ,5 ,7 整除的
最大五位数是100030-70=99960. 5. 3367先求出1~100 这100 个数的和,再求100
以内所有能被3 整除的数的和,以上二和之差就是所有不能被3 整除的数的和。
(1+2+3+…+100)- (3+6+9+12+ …+99 )
= (1+100 ) 2 100- (3+99) 2 33 =5050-1683 =3367 6. 1665能被3 整
除的二位数中最小的是12,最大的是99,所有能被3 整除的二位数如下:12,15,
18,21,…,96,99这一列数共30个数,其和为12+15+18+ …+96+99 =(12+99 )
30 2 =1665 7. 96910 或46915 五位数能被55整除,即此五位数既能被5 整
除,又能被11整除。所以B=0 或5.当B=0 时,能被11整除,所以(A+9+0 )-
(6+1 )
=A+2能被11整除,因此A=9 ;当B=5 时,同样可求出A=4.所以,所求的五位
数是96910 或46915. 8. 90因为105=3 5 7 ,根据数的整除性质,可知这个六位
数能同时被3 、5 和7 整除。
根据能被5 整除的数的特征,可知这个六位数的个位数只能是0 或5 两种,
再根据能被3 整除的数的特征,可知这个六位数有如下七个可能:199200,199230,
199260,199290,199215,199245,199275. 最后用7 去试除知,199290能被7
整除。
所以,199290能被105 整除,它的最后两位数是90. [ 注] 此题也可以这样
思考:先把后面两个方框中填上0 后的199200除以105 ,根据余数的大小来决定
最后两个方框内应填什么。
199200 105=1897 …15 105-15=90如果199200再加上90,199290便可被105
整除,故最后两位数是90. 9. 4316 因为99=9 11 ,所以42□28□既是9 的倍数,
又是11的倍数。根据是9 的倍数的特点,这个数各位上数字的和是9 的倍数。42
□28□这个六位数中已知的四个数的和是4+2+2+8=16,因此空格中两个数字的和
是2 或11. 我们把右起第一、三、五位看做奇位,那么奇位上已知两个数字的和
是2+2=4 ,而偶位上已知两个数字的和是4+8=12,再根据是11的倍数的特点,奇
位上数字的和与偶位上数的和之差是0 或11的倍数,所以填入空格的两个数应该
相差3 或相差8.从以上分析可知填入的两个数字的和不可能是2 ,应该是11. 显
然它们的差不可能是8 ,应该是3 ,符合这两个条件的数字只有7 和4.填入空格
时要注意7 填在偶位上,4 填在奇位上,即原六位数是42 7 28 4 ,又427284 99=4316,
所以所得的商是4316. 10. 1331第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121 的倍数;第三次报数后留下的同学最
初编号都是1331的倍数。
所以最后留下的只有一位同学,他的最初编号是1331. 11. ∵能被9 整除的
四位数的各位数字之和能被9 整除,1+7+3+□=11+□∴□内只能填7.∵能被11整
除的四位数的个位与百位的数字和减去十位与千位的数字和所得的差能被11整除。
∴(7+□)- (1+3 )=3+ □能被11整除,∴□内只能填8.∵能被6 整除的
自然数是偶数,并且数字和能被3 整除,而1+7+3+□=11+□,∴□内只能填4.所
以,所填三个数字之和是7+8+4=19. 12. 设补上的三个数字组成三位数,由这个
七位数能被2 ,5 整除,说明c=0 ;由这个七位数能被3 整除知1+9+9+2+a+b+c=21+a+b+c
能被11整除,从而a+b 能被3 整除;由这个七位数又能被11整除,可知(1+9+a+c
)-(9+2+b )=a-b-1能被11整除;由所组成的七位数应该最小,因而取a+b=3
,a-b=1,从而a=2 ,b=1.所以这个最小七位数是1992210. [注] 小朋友通常的解
法是:根据这个七位数分别能被2 ,3 ,5 ,11整除的条件,这个七位数必定是
2 ,3 ,5 ,11的公倍数,而2 ,3 ,5 ,11的最小公倍数是2 3 5 11=330. 这
样,1992000 330=6036…120 ,因此符合题意的七位数应是(6036+1)倍的数,
即1992000+(330-120 )=1992210. 13. 不可能。由于瓦夏原有100 张票,最后
还有100 张票,所以他作了多少次" 两换三" ,那么也就作了多少次" 三换两" ,
因此他一共出手了2k+3k=5k张票,而1991不是5 的倍数。
14. 显然,这样的自然数不可能为两位数,因为如果是两位数的话,则必然
具有形式,但为偶数,与它的各位数字之和等于13矛盾。现设求之数为三位数 .
于是由题意,且由被11整除的判别法则知是11的倍数。又由于所求之数为最小,
故有 =11. 两式相减得 .于是 12 ,由于 .当 .所以,所求的最小自然数是319.
入学帮助热线:400-805-3685010-51268841
咨询热线:010-51268841
国际学校择校
我要给孩子
报学校