2012年高考文科数学真题(北京卷) word版(4)
(18)(本小题共13分)
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(I) 若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求,a,b的值;
(II) 当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围。
19 (本小题共14分)
已知椭圆C:
(Ⅰ)求椭圆C的方程
(20)(本小题共13分)
设A是如下形式的2行3列的数表,
a |
b |
c |
d |
E |
f |
满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为第j列各数之和(j=1,2,3);记k(A)为|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。
(I) 对如下数表A,求k(A)的值
(II) 设数表A形如
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A ,求k(A)的最大值
(责任编辑:韩志霞)
特别说明:由于各省份高考政策等信息的不断调整与变化,育路高考网所提供的所有考试信息仅供考生及家长参考,敬请考生及家长以权威部门公布的正式信息为准。