大家都在关注:19年7月国际学校开放日全国优质国际高中国际初中国际小学推荐
学大教育中考/小升初1对1冲刺辅导,短期提升有诀窍,咨询电话:400-059-4258
第二讲 数字谜综合
内容概述
各种具有相当难度、求解需要综合应用多方面知识的竖式、横式、数字及数阵图等类型的数字谜问题.
典型问题
1.ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?
【分析与解】 因为两个数的和一定时,两个数越紧接,乘积越大;两个数的差越大,乘积越小.
A显然只能为1,则BCD+EFG=993,
当ABCD与EFG的积最大时,ABCD、EFG最接近,则BCD尽可能小,EFG尽可能大,有BCD最小为234,对应EFG为759,所以有1234×759是满足条件的最大乘积;
当ABCD与EFG的积最小时,ABCD、EFG差最大,则BCD尽可能大,EFG尽可能小,有EFG最小为234,对应BCD为759,所以有1759×234是满足条件的最小乘积;
它们的差为1234×759—1759×234=(1000+234)×759一(1000+759)×234=1000×(759—234)=525000.
入学帮助热线:400-805-3685010-51268841
咨询热线:010-51268841
国际学校择校
我要给孩子
报学校