育路教育网,权威招生服务平台
新东方在线

2014考研数学线性代数历年重点及复习思路

来源:育路考研网 时间:2013-09-14 15:57:52

    考研数学线性代数相比较高等数学和概率论的复习而言,呈现明显的知识点多,概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。因此,考研数学线性代数秋季复习,重点应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使所学知识能融会贯通,举一反三。为了让考生在秋季复习中能将线性代数提高到一个新的层次,这里给大家重点说一下历年考研重点及复习思路。

    1、行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

    2、矩阵中除可逆阵、伴随阵、分块阵、初等矩阵等重要概念外,主要也是运算,其运算分两个层次:

    (1)矩阵的符号运算

    (2)具体矩阵的数值运算

    3、关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

    4、向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。初等行变换是求向量组的极大无关组及向量组、矩阵秩的有效方法。

    5、对于特征值、特征向量,要求基本上有三点:

    (1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。

    (2)有关相似矩阵和相似对角化的问题,一般利用矩阵相似对角化的条件。另外,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.

    (3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及A的n次幂。

    6、将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:

    (1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。

    (2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

 

结束

特别声明:①凡本网注明稿件来源为"原创"的,转载必须注明"稿件来源:育路网",违者将依法追究责任;

②部分稿件来源于网络,如有侵权,请联系我们沟通解决。

有用

25人觉得有用

阅读全文

2019考研VIP资料免费领取

【隐私保障】

育路为您提供专业解答

相关文章推荐

23

2013.08

2014年考研数学线性代数重点:二次型

  考研数学中的线性代数虽然简单,但由于其知识点较多,也常常让考生们感到困扰。下面就线性代数中一......

您可能感兴趣
为什么要报考研辅导班? 如何选择考研辅导班? 考研辅导班哪个好? 哪些北京考研辅导班靠谱? 2019考研辅导班大全