育路教育网,权威招生服务平台
新东方在线

2012考研数学:线性代数知识点框架(6)

来源:育路教育网 时间:2011-08-14 12:39:39

  一些特殊的矩阵:单位阵、对角阵、初等矩阵。尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。

  每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。

  若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。

  第一种求逆阵的方法:伴随阵。这种方法的理论依据是行列式的按行(列)展开。

  矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。

  单位阵和初等矩阵都是可逆的。

  若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故比较后化成的阶梯型(比较简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。

  可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。

  由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。

  矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然适用。将矩阵看成一些列行向量组或列向量组的形式,实际也就是一种比较常见的对矩阵进行分块的方式。

结束

特别声明:①凡本网注明稿件来源为"原创"的,转载必须注明"稿件来源:育路网",违者将依法追究责任;

②部分稿件来源于网络,如有侵权,请联系我们沟通解决。

有用

25人觉得有用

阅读全文

2019考研VIP资料免费领取

【隐私保障】

育路为您提供专业解答

相关文章推荐

14

2011.08

2012考研数学:线性代数知识点框架(5)

  在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及......

14

2011.08

2012考研数学:线性代数知识点框架(4)

  为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。 ......

14

2011.08

2012考研数学:线性代数知识点框架(3)

  部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。  回到线性方程组的解的......

14

2011.08

2012考研数学:线性代数知识点框架(2)

  利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题......

14

2011.08

2012考研数学:线性代数知识点框架(1)

  线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程......

14

2011.08

2012考研数学:抓牢线性代数是得高分关键

  考研数学想要拿高分不是一件难事,但是如果没有努力的付出,也是不可能取得理想的成绩的。线性代数......

您可能感兴趣
为什么要报考研辅导班? 如何选择考研辅导班? 考研辅导班哪个好? 哪些北京考研辅导班靠谱? 2019考研辅导班大全