育路教育网,权威招生服务平台
新东方在线

线性代数知识点框架(三)

来源:来源于网络 时间:2010-07-16 09:52:58

 为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。

  对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。

  矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。

  任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。

  通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。

  考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。总而言之,初等变换不会改变矩阵的秩。因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。

  矩阵的秩,同时又可定义为不为零的子式的比较高阶数。

  满秩矩阵的行列式不等于零。非满秩矩阵的行列式必为零。

  既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r

  齐次线性方程组的解的结构问题,可以用基础解系来表示。当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。

  通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。

  非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。

 

结束

特别声明:①凡本网注明稿件来源为"原创"的,转载必须注明"稿件来源:育路网",违者将依法追究责任;

②部分稿件来源于网络,如有侵权,请联系我们沟通解决。

有用

25人觉得有用

阅读全文

2019考研VIP资料免费领取

【隐私保障】

育路为您提供专业解答

相关文章推荐

16

2010.07

线性代数知识点框架(二)

 在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也......

16

2010.07

线性代数知识点框架(一)

  线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程......

16

2010.07

考研数学典型例题解读:极限

......

16

2010.07

2011年考研数学复习要打好心理战

  一些决定考研的同学很头疼数学这个科目,从小数学基础打的不牢,学习数学没有信心。数学在整个考研......

16

2010.07

考研数学做题三大误区

 在与考生接触的过程中,考研辅导专家发现很多考生在复习时关注焦点偏离重心,有以下几种情况:  一......

16

2010.07

三招轻松备战2011年考研数学

 关于数学的复习阶段,相信大多数同学从各种渠道已经大致了解,一半氛围三个阶段——在首轮......

您可能感兴趣
为什么要报考研辅导班? 如何选择考研辅导班? 考研辅导班哪个好? 哪些北京考研辅导班靠谱? 2019考研辅导班大全