一、课程特点
1.四多:概念多,定理多,符号多,运算规律多,且内容相互纵横交错。
2.知识前后紧密联系。
二、考试重点及复习策略
在此,提醒学员及广大考生:应充分理解概念、掌握定理的条件、结论,熟悉符号的意义,掌握各种运算规律、计算方法。总结起来就是抓联系,找规律,重应用。
行列式的重点是计算,利用性质熟练、准确、快捷的计算出行列式的值是一个基本功。
矩阵中除可逆矩阵、分块矩阵、初等矩阵、对称矩阵、正交矩阵、数量矩阵等重要概念外,主要也是运算,首先是矩阵符号的运算,其次是数值运算。特别是在解矩阵方程时先用符号运算化简方程,然后利用所给数值求出比较后结果。这时往往是矩阵乘法或求逆,对这两种运算又务必要准确熟练。A和A*的关系式,矩阵乘积的行列式,方阵的幂,分块矩阵求逆及行列式也是常考的内容。
关于向量,在加减及数乘运算上等同于矩阵运算,而其特有的相关、无关性的命题却在试卷中随处可见。证明(或判断)向量组的线性相关(无关)性,线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理,并要注意推证过程中逻辑的正确性及证法的应用。
向量组的极大无关性、等价向量组、向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换求向量组及矩阵的秩的方法要熟练准确。在R?中,基、坐标、基变换公式,坐标变换公式,过度矩阵,线性无关向量组的标准正交化公式,必须概念清楚,计算熟练。
关于特征值,特征向量,对具体给定的数值矩阵,要会求特征值,特征向量。对抽象给出的矩阵,要把式子AX= X大胆运算。
关于相似矩阵和对角化的条件,实对称矩阵定能对角化,且可由正交变换化为对角阵。反之,又可由A的特征值,特征向量来确定A的参数或确定A。如果A为实对称矩阵,由于其不同的特征值所对应的特征向量相互正交,还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。对角化以后的形式,常可以求A的行列式或有关的行列式值。
关于二次型,一是化标准形(正交变换、可逆变换)这和把实对称矩阵化为对角矩阵是一个问题的两种提法。二是正定性问题(可用顺序主子式来判定),应熟悉二次型正定的有关充分条件和必要条件,利用标准形,特征值来证明相关矩阵的正定性。
特别声明:①凡本网注明稿件来源为"原创"的,转载必须注明"稿件来源:育路网",违者将依法追究责任;
②部分稿件来源于网络,如有侵权,请联系我们沟通解决。
25人觉得有用
23
2009.10
1.2009年国民经济和社会发展的主要预期目标是:国内生产总值增长8%左右,经济结构进一步优化;城镇新......
23
2009.10
一、考研作文A节 (1)命题形式 考研英语作文部分由A、B两节组成,考查考生的书面表达能力。总......
23
2009.10
很多同学都知道,大作文对于我们来说,似乎有一个非常神奇的数字“三”。我们知道“道生一,一生二......
22
2009.10
山东省2010年硕士研究生报名点约束规则报考点代码单位代码报考点名称可以接受的考试方式代码及名称接受......
22
2009.10
2010年研究生报名已经正式开始,很多考研的网友在网上表示,对于怎样选择合适的院校及专业出现困惑......
22
2009.10
1.请考生认真填写报考信息的各项内容。 ①同等学力考生(专科起点报考的考试)在“备用信息”栏内......