育路高考网,提供查院校、选专业、填志愿,高考择校路线规划服务
微信小程序
高校招生小程序

快速择校

微信公众号
高校招生公众号

政策解读

010-51291557

客服热线 : 8:00-20:00

09年高考数学练习题:概率二

2009-02-19 11:04:20 来源:
高考数学练习题:概率二
7.口袋里装有红色和白色共36个不同的球,且红色球多于白色球.从袋子中取出2个球,
若是同色的概率为  ,求:
(1) 袋中红色、白色球各是多少?
(2) 从袋中任取3个小球,至少有一个红色球的概率为多少?
解:(1)令红色球为x个,则依题意得 ,             (3分)
所以 得x=15或x=21,又红色球多于白色球,所以x=21.所以红色球为21个,白色球为15个.                        ( 6分)
(2)设从袋中任取3个小球,至少有一个红色球的事件为A,均为白色球的事件为B,
则P(B)=1--P(A)=  =                            (12分)
8.加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为
 ,且各道工序互不影响
(1)求该种零件的合格率
(2)从加工好的零件中任取3件,求至少取到2件合格品的概率
(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率
(用最简分数表示结果)
解:(1)该种零件合格率为
(2)该种零件的合格率为 ,则不合格率为 ,从加工好的零件中任意取3个,
至少取到2件合格品的概率
(3)恰好连续2次抽到合格品的概率
 
9.同时抛掷15枚均匀的硬币一次
 (1)试求至多有1枚正面向上的概率;
 (2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?
请说明理由.
解: (1)记“抛掷1枚硬币1次出现正面向上”为事件A,P(A)= ,
抛掷15枚硬币1次相当于作15次独立重复试验,
根据几次独立重复试验中事件A发生K次的概率公式,
记至多有一枚正面向上的概率为P1
则P1= P15(0)+ P15(1)= + =          
  (2)记正面向上为奇数枚的概率为P2,则有
P2= P15(1)+ P15(3)+…+ P15(15)= + +…+
  = +…+ )–         
又“出现正面向上为奇数枚”的事件与“出现正面向上为偶数枚” 的事件是对立事件,记“出现正面向上为偶数枚” 的事件的概率为P3
  P3=1– =            相等 
10.如图,用 表示四类不同的元件连接成系统 .当元件 至少有一个正常工作且元件 至少
有一个正常工作时,系统 正常工作.已知
元件 正常工作的概率依次为0.5,
0.6,0.7,0.8,求元件连接成的系统 正常
工作的概率 .
解:由A,B构成系统F,由C,D构成系统G,
那么系统F正常工作的概率
 ,系统G正常工作的概率为 ,
由已知,得 ,故系统M正常工作的概率为0.752.
11.有一批种子,每粒发芽的概率为 ,播下5粒种子,计算:
 (Ⅰ)其中恰好有4粒发芽的概率;  (Ⅱ)其中至少有4粒发芽的概率;
 (Ⅲ)其中恰好有3粒没发芽的概率. (以上各问结果均用最简分数作答)
解:(Ⅰ)
(Ⅱ)
(Ⅲ)
12.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.
(1)摸出2个或3个白球;    (2)至少摸出一个黑球.
解:   (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A、B,
则  
    ∵A、B为两个互斥事件      ∴P(A+B)=P(A)+P(B)=
         即摸出的4个球中有2个或3个白球的概率为 …………6分
   (Ⅱ)设摸出的4个球中全是白球为事件C,则
         P(C)= 至少摸出一个黑球为事件C的对立事件
         其概率为 ………………12分
13.2005年江苏省普通类高校招生进行了改革,在各个批次的志愿填报中实行平行志愿,
按照“分数优先,遵循志愿”的原则进行投档录取.例如:在对第一批本科投档时,
计算机投档系统按照考生的5门高考总分从高到低逐个检索、投档.当检索到某个考
生时,再依次按考生填报的A、B、C三个院校志愿进行检索,只要被检索到3所院校
中一经出现符合投档条件的院校,即向该院校投档,假设一进档即被该院校录取.张
林今年的高考成绩为600分(超过本一线40分),他希望能上甲、乙、丙三所院校中
的一所.经咨询知道,张林被甲校录取的概率为0.4,被乙校录取的概率为0.7,被丙
校录取的概率为0.9.如果张林把甲、乙、丙三所院校依次填入A、B、C三个志愿,求: (Ⅰ) 张林被B志愿录取的概率;
(Ⅱ) 张林被A、B、C三个志愿中的一个录取的概率.
解:记“张林被 志愿录取”为事件 ,“张林被 志愿录取”为事件 ,“张林被 志愿录取”为事件 .……………………………………………………1分
(Ⅰ) 由题意可知,事件 发生即甲校不录取张林而乙校录取张林.
∴ .………… ………………………6分
(Ⅱ) 记“张林被 、 、 三个志愿中的一个录取”为事件 .由于事件 、 、 中任何两个事件是互斥事件,…… …………………………7分
且 … ……9分
∴ .
方法2: 
(Ⅱ) 记“张林被 、 、 三个志愿中的一个录取”为事件 .由于事件 的对立事件是“张林没有被 、 、 三个志愿中的一个录取”. ……7分
∴ … ………………10分
 .… …………………11分
答:张林被 志愿录取的概率为0.42;张林被 、 、 三个志愿中的一个录取的概率为0.982.…… ……………………………………12分
14.平面直角坐标系中有两个动点A、B,它们的起始坐标分别是(0,0),(2,2),动点A、B
从同一时刻开始每隔1秒钟向上、下、左、右四个方向中的一个方向移动1个单位,
已知动点A向左、右移动的概率都是 ,向上、下移动的概率分别是 和p,动点B
向上、下、左、右四个方向中的一个方向移动1个单位的概率都是q.
(Ⅰ)求p和q的值;
(Ⅱ)试判断最少需要几秒钟,动点A、B能同时到达点D(1,2),并求在最短时间内
同时到达点D的概率 .
解:(Ⅰ)由于质点A向四个方向移动是一个必然事件,…………………………2分
所以 ,所以 . ………………………………4分
同理可得 . ……………………………………………………6分
(Ⅱ)至少需要3秒可以同时到达点D.  ……………………………………8分
经过3秒钟,点A到达点D的概率为3p右p上p上= . ……………………10分
经过3秒钟,点B到达点D的概率为 . ……………………12分
所以,经过3秒钟,动点A、B同时到达点D的概率为 .…14分
15.某人抛掷一枚硬币,出现正反的概率都是 ,构造数列 ,使
 ,记
    (1)求 时的概率;
    (2)若前两次均为正面,求 时的概率。
解:(1) ,需4次中有3次正面1次反面,设其概率为
    则 ………………6分
    (2)当同时出现正面时,要使 ,需后6次3次正面3次反面,设其概率为
     ………………12分
16.一位学生每天骑自行车上学,从他家到学校共有5个交通岗,假设他在每个交通岗遇
到红灯是相互独立的,且首末两个交通岗遇红灯的概率均为 ,其余3个交通岗遇红灯
的概率均为 .
(Ⅰ)若 ,求该学生在第三个交通岗第一次遇到红灯的概率;
(Ⅱ)若该学生至多遇到一次红灯的概率不超过 ,求 的取值范围.
解: (Ⅰ) 记该学生在第 个交通岗遇红灯为事件 ( ),它们相互独立,则
“这名学生在第三个交通岗第一次遇到红灯”为 .
 .
答: 该学生在第三个交通岗第一次遇到红灯的概率为 .  6分
注:本小问缺少事件命名、概型分析、答,各扣一分.
(Ⅱ)过首末两个路口,过中间三个路口分别看作独立重复试验.该学生至多遇到一次红灯指没有遇红灯(记为 )或恰好遇一次红灯(记为 ),则 与 互斥.
 , 7分
 . 9分
该学生至多遇到一次红灯,为 ,
 ,
故 ,即 ,解得 . 11分
又 ,所以 的取值范围为 .  12分
注: 的取值范围写成 不扣分.
17.高三(1)班、高三(2)每班已选出3名学生组成代表队,进行乒乓球对抗赛,比赛
规则是:① 按“单打、双打、单打”顺序进行三盘比赛;  ② 代表队中每名队员至少
参加一盘比赛,不得参加两盘单打比赛; ③ 先胜两盘的队获胜,比赛结束.
已知每盘比赛双方胜出的概率均为
(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?
(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?
(Ⅲ)高三(1)班代表队至少胜一盘的概率为多少?
解:解:(Ⅰ)参加单打的队员有 种方法.
参加双打的队员有 种方法.    (2分)
所以,高三(1)班出场画容共有    (4分)
(Ⅱ)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜.所以,连胜两盘的概率为    (8分)
(Ⅲ)高三(1)班至少胜盘,可分为:
(1)胜一盘,此时的概率为    (9分)
(2)胜两盘,此时的概率为   (11分)
所以,高三(1)班至少胜一盘的概率为    (12分)
或:高三(1)班代表队至少胜一盘的对立事件为输掉前两盘  (10分)
所以,所求概率为   (12分)
18.甲、乙两人各进行3次射击,甲每次击中目标的概率为 ,乙每次击中目标的概率为 ,
   (1)记甲击中目标的次数为 ,求 的概率分布及数学期望E ;
   (2)求乙至多击中目标2次的概率;
   (3)求甲恰好比乙多击中目标2次的概率.(14分)
19.为了支持三峡工程建设,某市某镇决定接受一批三峡移民,其中有3户 互为亲戚关
系,将这3户移民随意安置到5个村民组
① 求这3户恰好安置到同一村民组的概率
② 求这3户中恰好有2户安置到同一村民组的概率
解:①3户任意分配到5个村民组,共有53种不同分法,3户都在同一村民组共有5种方法,3户都在同一村民组的概率为 ,∴3户都在同一村民组的概率为0.04
     ②恰有2户分到同一村民组的结果有 ∴ ∴恰有2户分到同一
村民组的概率为0.48
20.某制药厂设甲、乙两个研究小组,独立研制治疗禽流感的新药物.
(1)设甲小组研制出新药物的概率为0.75,乙小组研制出新药物的概率为0.80,求甲、
乙两组均研制出新药物的概率;
(2)设甲、乙两组研制出新药物的概率相同。若该制药厂研制出新药物的概率为0.64,
求甲小组研制出新药物的概率.
解:(1)0.80×0.75=0.60……………………………………………5分
(2)设甲研制出的概率为P,1-(1-P)2=0.64………………10分
     解得P=0.40……………………11分
   答(1)甲、乙两组均研制出新药的概率为060;
(2)甲研制出的概率为0.40.……………12分
21.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为 现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用 表示取球终止所需要的取球次数.
(I)求袋中所有的白球的个数;
(II)求甲取到白球的概率.
解:(I)设袋中原有 个白球,由题意知
 
所以n(n-1)=6,解得 (舍去 )即袋中原有3个白球.
(II)由题意, 的可能取值为1,2,3,4,5
 
 
 
 
 
 因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件 ,
则   P(A)=P(“ =1”,或“ =3”,或“ =5”).
   因为事件“ =1”、“ =3”、“ =5”两两互斥,所以
 
22.在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜
甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;
第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求:
(1)乙连胜四局的概率;
(2)丙连胜三局的概率.
解:(1)当乙连胜四局时,对阵情况如下:
第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;
第四局:乙对丙,乙胜.
  所求概率为 = × = =0.09
  ∴ 乙连胜四局的概率为0.09.
  (2)丙连胜三局的对阵情况如下:
  第一局:甲对乙,甲胜,或乙胜.
  当甲胜时,第二局:甲对丙,丙胜.第三局:丙对乙,丙胜;第四局:丙对甲,丙胜.
  当乙胜时,第二局:乙对丙,丙胜;第三局:丙对甲,丙胜;第四局:丙对乙,丙胜.
  故丙三连胜的概率 =0.4× ×0.5+(1-0.4)× ×0.6=0.162.

  (责任编辑:卢雁明)

  特别说明:由于各省份高考政策等信息的不断调整与变化,育路高考网所提供的所有考试信息仅供考生及家长参考,敬请考生及家长以权威部门公布的正式信息为准。

高考专业报名咨询
  • 意向专业:
  • 学生姓名:
  • 联系电话:
  • 出生日期:
  • 您的问题:
  • 《隐私保障》

高考低分择校动态

免费咨询

在线咨询
录取几率测评
扫码关注
官方微信公众号

官方微信公众号

电话咨询
联系电话
010-51291557
返回顶部