高二数学任意的三角函数知识点总结

2016-12-29 12:25:42 来源:精品学习网

  在中国古代把数学叫算术,又称算学,最后才改为数学。育路小编准备了数学高二年级必修4第一单元知识点,希望你喜欢。

  公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα k∈z

  cos(2kπ+α)=cosα k∈z

  tan(kπ+α)=tanα k∈z

  cot(2kπ+α)=cotα k∈z

  公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=—sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三: 任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六: π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  推算公式:3π/2±α与α的三角函数值之间的关系:

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  数学高二年级必修4第一单元知识点就为大家介绍到这里,希望对你有所帮助。

  (责任编辑:陈海岩)

分享“高二数学任意的三角函数知识点总结”到:

58.4K
关注高考招生官微
获取更多招生信息
高校招生微信