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《线性代数》模拟题
1. 已知
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解：
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2. 用克莱姆则求解方程组
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解：[image: image13.png]
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3.计算行列式
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4.求齐次线性方程组
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，的基础解系以及通解。
解：对系数矩阵A作初等行变换，变为行最简矩阵，有
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便得
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  即得基础解系  ，
令
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并由此得到通解
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5. 计算 
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解：
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6.判断下列实矩阵能否化为对角阵？ 
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解：由
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， 得方程组
解之得基础解系
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同理，对
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     由于
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即A有3个线性无关的特征向量，因而A可对角化。
7.问
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解：
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若齐次方程组有非零解，则D=0
故：
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8.已知
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证明：要证存在2阶方阵X,Y,使
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类似于线性方程求解的方法，对增广矩阵
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即得：
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因此向量组
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9.设a,b为两个已知的n维向量，集合 ，试判断集合是否为向量空间。
解：V是一个向量空间，因为若
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这个向量空间称为由向量a，b所生成的向量空间。
10.设
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试用施密特正交化过程把这组向量规范正交化。
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再把它们单位化，取     
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11.求一个正交变换
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解：二次型的矩阵为
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它的特征多项式为
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把二，三，四行分别减去第一行，有
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于是A的特征值为. 
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得基础解系
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当
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单位化即得
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于是正交变换为
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12.计算行列式
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解：按照第一行展开得：
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13.已知向量组
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      故方程组只有零解
[image: image158.wmf]123

0

xxx

===

[image: image160.wmf]123

,,

bbb

，所以向量组线性无关。
14.对下列各实对称矩阵，分别求出正交矩阵
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解：第一步 求A的特征值
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解之得基础解系
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， 得
解之得基础解系
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第三步  将特征向量正交化
     由于
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    第四步  将特征向量单位化
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则 
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得特征值   
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于是得正交阵  
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